دانلود تحقیق با موضوع determination، evaluation

nanocrystal. Mater. Lett. 61, 3215-3217.
Shin KH, Cha DK. Microbial reduction of nitrate in the presence ofnanoscale zero-valent iron. Chemosphere. 2008; 72: 257-262.
Simkiss K, Wilbur KM. Biomineralization. Academic, New York. 1989. ISBN 0 12643830.
Singaravelu G, Arockiamary J, Ganesh K, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 2007; 57:97-101.
Slavin, JL; Brauer, PM; Marlett, JA (1981). “Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects.”. The Journal of Nutrition 111 (2): 287-97. PMID 6257867.
Slawson RM, Van Dyke MI, Lee H, Trevor JT. Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid 1992; 27:73-9.
Slawson, R.M. et al. (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27, 72-79.
Sofia, H.J., Burland, V., Daniels, D.L., Plunkett III, G., Blattner,
F.R., 1994. Analysis of the Escherichia coli genome. V. DNA
sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids
Res. 22, 2576-2586.
Sokollek S. J., Hertel C. and Hammes W. P., “Cultivation and preservation of vinegar bacteria,” J. Biotechnol., vol. 60, 1998, pp.195-206.
Son, W.K. et al. (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym. 65, 430-434 19 Shin, Y. et al. (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J. Phys. Chem. C 112, 4844-4848.
Sondi, D. V. Goia, E. J. Matijevic, J. Collpid. Interface. Sci. 260(2003) 75.
Sossou S. K., Y. Ameyapoh, S. D. Karou and C. D. Souza, “Study of pineapple peelings processing into vinegar by biotechnology,” Pak. J.Biol. Sci., vol. 11, 2009, pp.859-865.
Standal R., Iversen T.G., Coucheron D.H., Fjaervik E., Blatny J. Valla M., S., A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon, J. Bacteriol. 176 (1994) 665-672.
Sun, D.P. et al. (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2, 287-292.
Sun, D.P. et al. (2010) Novel Pd-Cu/bacterial cellulose nanofibers: preparation and excellent performance in catalytic denitrification. Appl. Surf. Sci. 256, 2241-2244.
Sutherland. I.W, Structure-function relationship in microbial exopolysaccharides, Biotechnol. Adv. 12 (1994) 393-448.
Sutherland I.W., Novel and established applications of microbialpolysaccharides, Trends Biotechnol. 16 (1998) 41-46.
Swatloski RP, Spear SK, Holbrey GD, Rogers ED, Dissolution of cellose with ionic liquids, Journal of the American Chemical Siciety,Vol.124,No.18,4974-4975,(2002).
Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 2004;11:1553-9.
Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and sizeseparation of gold nanoparticles via diafiltration. J. Am. Chem. Soc. 2006; 128: 3190-3197.
Tedesco S, Doyle H, Blasco J, Redmond GD, Sheehan A. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology. 2010; 100: 178-186.
Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles 4. Tan Y, Dai Y, Li Y, Zhua D. Preparation of gold, platinum, palladiumand silver nanoparticles by the reduction of their salts with a weakreductant-potassium bitartrate. J Mater Chem 2003;13:1069-75.
Thawatchai, M., Seiichi, T., Ratana, R.(2007). Pregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Microb. Biotech,3;6-7.
Trevors, J.T. and Starodub, M. E. (1990). Elektroporation of pKK1 silver resistanc plasmid from Pseudomonas stutzeri AG259 into Pseudomonas putida CYM318. Curr. Microbiol. 21, 103-107.
Tsuchida, T. and F. Yoshinaga, 1997. Production of bacterial cellulose by agitation culture systems. Pure and Applied Chemistry, 69: 2453-2458.
Tumer MB, Spear SK, Holbery JD, Rogers RD, Production of bioactive cellulose films reconstituted from ionic liquids, Biomacromolecules, Vol5, No.4,1379-1384,(2004).
Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol. 2008; 8: 3909-3913.
Updegraff DM (1969). “Semimicro determination of cellulose in biological materials”. Analytical Biochemistry 32 (3): 420-424. doi:10.1016/S0003-2697(69)80009-6. PMID 5361396.
Vandamme. E.J, De Baets. S, Vanvaelen. A, Joris. K, Wulf. P. De, Improved production of bacterial cellulose and its application potential, Polym. Degrad. Stab. 59 (1998) 93-99.
Vern-Gross TZ, Kowal-Vern A, Poulakidas SJ. Toxic Epidermal Necrolysis in an Irradiated Patient Treated with a Nanocrystalline Silver Dressing. Case Rep Dermatol. 2012; 4(1): 72-.
von Ardenne, Manfred (1938). “Das Elektronen-Rastermikroskop. Praktische Ausführung” (in German). Zeitschrift für technische Physik 19: 407-416.
Wang, J. et al. (2003) Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer. Anal. Chim. Acta 482, 149-155.
Wang S, Mamedova N, Kotov NA, Chen W, Studer J: Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2002, 2:817-822.
Wang T, Yang L, Zhang B, Liu J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor The red Se nanoparticles. Colloids and Surfaces B: Biointerfaces. 2010; 80: 94-102.
Watson JHP, Ellwood DC, Soper AK, Charnock J. Nanosized stronglymagnetic
bacterially-produced iron sulfide materials. J Magn Magn Mater 1999;203:69-72.
Wei-Chih Huanga, Shu-Jen Chenb, Teh-Liang Chen(2006). The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochemical Engineering Journal 32 :239-243.
Weissleder R, Elizondo G, Wittenburg J, Rabito CA, Bengele HH, Josephson L: Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990, 175:489-493.
Wen, H.C., Lin, Y.N., Jian, S.R., Tseng, S.C., Weng, M.X., Liu, Y.P., Lee, P.T., Chen, P.Y., Hsu, R.Q., Wu, W.F., Chou, C.P., 2007. Observation of growth of human fibroblasts on silver nanoparticles. J. Physics: Conference Series 61, 445-449.
Williams, W.S., Canon, R.E.(1989). Alternative environmental roles for celluloseproducted by Acetobacter xylinum. Appl. Envi. Microbial,26;2448-2452.
Windt De W, Peter A, Willy V. Bioreductive deposition of palladium (0)nanoparticles on Shewanella oneidensis with catalytic activity towards reductivedechlorination of polychlorinated biphenyls. Environ. Microb. 2005; 7: 314-325.
Wong H.C., Fear A.L., Calhoon R.D., Eichinger G.H., Mayer R., Amikam D., Benziman M., Gelfand D.H., Meade J.H., Emerick A.W., Bruner R., A. Ben-Bassat, R. Tal, Genetic organization of the cellulose synthase operon in Acetobacter xylinum, Proc. Natl. Acad. Sci.USA 87 (1990) 8130-8134.
Yang, G., Xie, J. J., Hong, F., Cao, Z. J., & Yang, X. X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers, 87, 839-845.
Yang, J. et al. (2007) A DNA electrochemical sensor based on nanogoldmodifiedpoly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal. Biochem. 365, 24-30.
Yang, J. et al. (2011) Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application. J. Hazard. Mater. 189, 377-383.
Yang, J.Z. et al. (2009) In situ deposition of platinum nanoparticles onbacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim. Acta 54, 6300-6305.
Yang, R. et al. (2008) Peroxidase conjugate of cellulose nanocrystals forthe removal of chlorinated phenolic compounds in aqueous solution. Biotechnology 7, 233-241.
Yoshida J, Kobayashi T: Intracellular hyperthermia for cancerusing magnetite cationic liposomes. J Magn Magn Mater 1999,194:176-184.
Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, He N, Zheng S. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem. Technol. Biotechnol. 2005; 80: 285-290.
Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011; 82: 489-494.
Zogaj X., . Nimtz M, Rohde M., W Bokranz., R?mling U., The multicellularmorphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix,Mol. Microbiol. 39 (2001) 1452-1463
Abstract
The process of vinegar production is an incomplete reaction physiologicaly. Acetobacter and Gluconobacter are major vinegar producing bacteria. These organisms are gram-negative, rod form and aerobic. They have not pigments, they have catalase and oxidase activity and also move by peritrichous flagella. Gluconacetobacter xylinus one of the importanr cellulose producing bacterium. Nano is a Greek word that means 10-9. Today this word use in nano-technology. Silver nano-particles is the most used in nano fields due to the important biochemical and biophysical features. In this study, 20 species of bacteria with ability of cellulose production were isolated and identifies. Then 5 species with high ability of cellulose production were selected and after DNA extraction, the polymerase chain reaction (PCR) were done and finally sequenced using specific primers.

دیدگاهتان را بنویسید